Characterizations of Strongly Regular Graphs: Part II: Bose-Mesner algebras of graphs

نویسنده

  • Sung Y. Song
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Spin Models, Triply Regular Association Schemes, and Duality

Motivated by the construction of invariants of links in 3-space, we study spin models on graphs for which all edge weights (considered as matrices) belong to the Bose-Mesner algebra of some association scheme. We show that for series-parallel graphs the computation of the partition function can be performed by using seriesparallel reductions of the graph appropriately coupled with operations in...

متن کامل

A Generalization of Strongly Regular Graphs

Motivated from an example of ridge graphs relating to metric polytopes, a class of connected regular graphs such that the squares of their adjacency matrices are in certain symmetric Bose-Mesner algebras of dimension 3 is considered in this paper as a generalization of strongly regular graphs. In addition to analysis of this prototype example defined over ðMetP5Þ , some general properties of th...

متن کامل

Type-II Matrices Attached to Conference Graphs

We determine the Nomura algebras of the type-II matrices belonging to the Bose-Mesner algebra of a conference graph. 1 Type-II Matrices and Nomura Algebras We say that an n × n matrix W with complex entries is type II if W (j, i)(W)(i, j) = 1 n for i, j = 1, . . . , n. So a type-II matrix is invertible and has no zero entry. We use I and J to denote the identity matrix and the matrix of all one...

متن کامل

Hyper-self-duality of Hamming and Doob graphs

We show that the Doob and Hamming graphs are hyper-self-dual. We then show that although the Doob graphs are formally dual to certain Hamming graphs, they are not hyper-dual to them. We do so by showing that Bose-Mesner subalgebras and Kronecker products of Bose-Mesner algebras inherit hyper-duality.

متن کامل

ELA A NOTE ON STRONGLY REGULAR GRAPHS AND (k, τ)-REGULAR SETS

A subset of the vertex set of a graph G, S ⊆ V (G), is a (k, τ)-regular set if it induces a k-regular subgraph of G and every vertex not in the subset has τ neighbors in it. This paper is a contribution to the given problem of existence of (k, τ)-regular sets associated with all distinct eigenvalues of integral strongly regular graphs. The minimal idempotents of the Bose-Mesner algebra of stron...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005